Varieties of groups and three-manifolds
نویسندگان
چکیده
منابع مشابه
Artin groups, rewriting systems and three-manifolds
We construct finite complete rewriting systems for two large classes of Artin groups: those of finite type, and those whose defining graphs are based on trees. The constructions in the two cases are quite different; while the construction for Artin groups of finite type uses normal forms introduced through work on complex hyperplane arrangements, the rewriting systems for Artin groups based on ...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولQuasi-Quantum Groups, Knots, Three-Manifolds, and Topological Field Theory
We show how to construct, starting from a quasi-Hopf algebra, or quasi-quantum group, invariants of knots and links. In some cases, these invariants give rise to invariants of the three-manifolds obtained by surgery along these links. This happens for a finite-dimensional quasi-quantum group, whose definition involves a finite group G, and a 3-cocycle ω, which was first studied by Dijkgraaf, Pa...
متن کاملThree Dimensional Manifolds, Kleinian Groups and Hyperbolic Geometry
1. A conjectural picture of 3-manifolds. A major thrust of mathematics in the late 19th century, in which Poincaré had a large role, was the uniformization theory for Riemann surfaces: that every conformai structure on a closed oriented surface is represented by a Riemannian metric of constant curvature. For the typical case of negative Euler characteristic (genus greater than 1) such a metric ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 1973
ISSN: 0040-9383
DOI: 10.1016/0040-9383(73)90023-2